STANDARD EQUIPMENT

MGX-6848 SC

- SAE J617 housing no. 0
- Flexible coupling for 18" flywheel (SAE J620 size 460)
- Electric GP-valve with manual override
- EC050 profile module – interface for engagement signals
- Mounted oil cooler for raw water cooling
- Oil strainer and oil filter

OPTIONS

<table>
<thead>
<tr>
<th>Input hub for freestanding installation</th>
<th>SAE J617 housing no. 00</th>
<th>Flexible coupling for 21" flywheel (SAE J620 size 530)</th>
<th>Flexible coupling for 21" flywheel (SAE J620 size 530)</th>
<th>Flexible coupling for 21" flywheel (SAE J620 size 530)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

MGX-6848 SC

- EC050 E-Troll module – interface for engagement & trolling signals
- Companion flange/bolt set
- Monitoring devices to customer's specification
- Output shaft driven trailing pump
- Mounted oil cooler for fresh water cooling
- Mounting brackets
- Live PTO
 - SAE J744 size 127-4, 32-4 (SAE “C”, 2/4-bolt) – max. 592 Nm
 - SAE J744 size 127-4, 38-4 (SAE “C-C”, 2/4-bolt) – max. 1187 Nm
- Hydraulic Clutchable pump mount PTO
 - SAE J744 size 127-4, 32-4 (SAE “C”, 2/4-bolt) – max. 592 Nm
 - SAE J744 size 127-4, 38-4 (SAE “C-C”, 2/4-bolt) – max. 1187 Nm
- Weight (dry weight with standard equipment) **1001 kg**

INPUT RATINGS – KILOWATTS (KW) (HORSEPOWER [HP])*

<table>
<thead>
<tr>
<th>Reduction Ratios</th>
<th>Intermediate Duty</th>
<th>Medium Duty</th>
<th>Continuous Duty</th>
<th>Input speed limits RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>@1800 RPM</td>
<td>@2100 RPM</td>
<td>@1600 RPM</td>
<td>@1800 RPM</td>
</tr>
<tr>
<td>1.51, 1.88, 2.03</td>
<td>1342 kW (1800 hp)</td>
<td>1566 kW (2100 hp)</td>
<td>1187 kW (1592 hp)</td>
<td>1342 kW (1800 hp)</td>
</tr>
<tr>
<td>2.47, 2.58, 2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>1269 kW (1702 hp)</td>
<td>1453 kW (1948 hp)</td>
<td>1103 kW (1479 hp)</td>
<td>1226 kW (1644 hp)</td>
</tr>
</tbody>
</table>

* Ratings shown are for use with standard right hand rotation engines.
SERVICE CLASSIFICATION DEFINITIONS

Pleasure Craft [PC]: Up to 500 hours/year, low load factor usage planing hull vessels where typical full engine throttle operation is less than 10% of total time. The balance of operation at 80% of full engine throttle or less. Marine transmissions for use in long range pleasure cruisers, sportfish charter boats/patrol boats do not qualify for Pleasure Craft Service.

Note: Some revenue producing applications such as Planing Hull Bristol Bay Gillnetter do qualify under Pleasure Craft rating definition.

Light Duty [LD]: Relatively low hour usage (less than 1500 hours per year) where full throttle operation is 2 hours out of 12.

Typical applications include planing hull vessels such as fire boats, sportfish charter boats, and patrol/custom boats. This rating is also applicable to some bow and stern thruster applications.

Intermediate Duty [ID]: Hour usage of up to 2000 hours/year (for models MG-5114 Series and smaller) and up to 3000 hours/year (for models larger than MG-5114 Series) with 50% of the operating time at full engine rating.

Typical applications include planing hull vessels such as ferries, fishing boats, crew boats, and some displacement hull yachts as well as some bow and stern thruster applications.

Medium Duty [MD]: Hour usage of up to 4000 hours/year with up to 80% of operating time at full engine power. This duty classification is for usage where some variations in engine speed/power occur as part of normal vessel operation.

Typical vessels include mid-water trawlers, crew/supply boats, ferries, and some inland water tow boats.

Continuous Duty [CD]: For use in continuous operation with little or no variation in engine speed/power setting.

Typical vessels include fishing trawlers, tow/tug boats and ocean going vessels.

Important Notice: Torsional Vibration: Disregarding propulsion system torsional compatibility could cause damage to components in the drive train resulting in loss of mobility. At minimum, system incompatibility could result in gear clatter at low speeds.

The responsibility for ensuring that the torsional compatibility of the propulsion system is satisfactory rests with the assembler of the drive and driven equipment.

Torsional vibration analysis can be made by the engine builder, marine survey societies, independent consultants and others. Twin Disc is prepared to assist in finding solutions to potential torsional problems that relate to the marine transmission.

Twin Disc, Incorporated reminds users of these products that their safe operation depends on use in compliance with engineering information provided in this bulletin. Users are also reminded that safe operation depends on proper installation, operation and routine maintenance and inspection under prevailing conditions. It is the responsibility of the user (and not Twin Disc, Incorporated) to provide and install guards or safety devices which may be required by recognized safety standards or by the Occupational Safety and Health Act of 1970 and its subsequent provision.