AM 216 PUMP DRIVE
MAXIMUM INPUT POWER 205 KW (275 HP)
FOR RATIO 1.00:1 @ 3200 RPM

QUALITY IS STANDARD:
• CAST IRON HOUSINGS
• SHAVED GEARS
• BALL BEARINGS
• CASE HARDENED SHAFTS
• VITON SEALS ON INPUT SHAFT
• OUTPUT ROTATION OPPOSITE THE DIRECTION OF INPUT ROTATION
• GEAR RATIOS IDENTICAL ON ALL OUTPUTS
• MODULAR DESIGN

AM 216 TECHNICAL DATA

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MAXIMUM INPUT TORQUE N·m (lb·ft)</th>
<th>MAX. OUTPUT TORQUE PER PUMP PAD N·m (lb·ft)</th>
<th>MAXIMUM INPUT SPEED RPM</th>
<th>MAXIMUM OUTPUT SPEED RPM</th>
<th>OIL QUANTITY L (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>800 (590)</td>
<td>200 (148)</td>
<td>2400</td>
<td>4800</td>
<td>1.9 (0.50)</td>
</tr>
<tr>
<td>0.68</td>
<td>735 (542)</td>
<td>250 (184)</td>
<td>2650</td>
<td>3897</td>
<td>2.0 (0.53)</td>
</tr>
<tr>
<td>0.79</td>
<td>700 (516)</td>
<td>275 (203)</td>
<td>2850</td>
<td>3608</td>
<td>2.0 (0.53)</td>
</tr>
<tr>
<td>0.89</td>
<td>670 (494)</td>
<td>300 (221)</td>
<td>3200</td>
<td>3596</td>
<td>1.7 (0.45)</td>
</tr>
<tr>
<td>1.00</td>
<td>630 (465)</td>
<td>315 (232)</td>
<td>3200</td>
<td>3200</td>
<td>1.7 (0.45)</td>
</tr>
<tr>
<td>1.13</td>
<td>560 (413)</td>
<td>320 (236)</td>
<td>3300</td>
<td>2920</td>
<td>1.7 (0.45)</td>
</tr>
<tr>
<td>1.27</td>
<td>550 (406)</td>
<td>350 (258)</td>
<td>3600</td>
<td>2835</td>
<td>1.5 (0.40)</td>
</tr>
<tr>
<td>1.47</td>
<td>500 (369)</td>
<td>365 (269)</td>
<td>3950</td>
<td>2687</td>
<td>1.3 (0.34)</td>
</tr>
</tbody>
</table>

See reverse for selection procedures.

AM 216 DIMENSIONS
Basic Pump Drive
Weight: 36 kg (79 lb)
With one plate 10˝ clutch
AM 216 BD 130

With one plate 11˝ clutch
AM 216 BD 145

Independent Mount with one plate 10˝ clutch
AM 216 BDS 130

Independent Mount with one plate 11˝ clutch
AM 216 BDS 145

TECHNICAL DATA FOR AVAILABLE CLUTCHES

<table>
<thead>
<tr>
<th>CLUTCH TYPE</th>
<th>SAE SIZE</th>
<th>MAXIMUM INPUT TORQUE* N·m (lb·ft)</th>
<th>MAXIMUM SPEED RPM</th>
<th>POWER kW (hp)</th>
<th>MODEL</th>
<th>WEIGHT kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD 130</td>
<td>3 or 4</td>
<td>330 (243)</td>
<td>3100</td>
<td>70 (94)</td>
<td>AM 216 BD 130</td>
<td>76 (168)</td>
</tr>
<tr>
<td>BD 145</td>
<td>3 or 4</td>
<td>450 (332)</td>
<td>3100</td>
<td>80 (107)</td>
<td>AM 216 BD 145</td>
<td>80 (176)</td>
</tr>
<tr>
<td>BDS 130</td>
<td>—</td>
<td>330 (243)</td>
<td>3100</td>
<td>70 (94)</td>
<td>AM 216 BDS 130</td>
<td>107 (236)</td>
</tr>
<tr>
<td>BDS 145</td>
<td>—</td>
<td>450 (332)</td>
<td>3100</td>
<td>80 (107)</td>
<td>AM 216 BDS 145</td>
<td>111 (245)</td>
</tr>
</tbody>
</table>

All clutch engagements to be with prime mover below 1000 RPM. High inertia loads may require use of larger clutch. Contact Twin Disc application engineering department for assistance.

* Applied torque equals 80% or less of maximum input torque.

PUMP DRIVE SELECTION PROCEDURE

1. Identify the number and type of hydraulic pumps to be applied.
2. Check the maximum torque absorbed by the pump or pumps on each output of the pump drive.
3. Check the maximum power/torque entering the pump drive from the prime mover.
4. Compare the size of the hydraulic pumps to the selected pump drive installation dimensions to determine if the proper clearance exists to mount the pumps on the pump drive.
5. Select the desired input configuration:
 - B – Basic mount, either with drive plate or rubber block drive
 - BD – Engine mounted clutch input
 - BDS – Independently mounted clutch input

 If a BD or BDS option is selected, verify that the input speed does not exceed the maximum allowable speed for the clutch and that the applied torque does not exceed 80% of the maximum torque rating of the clutch.
6. Verify that the torque value of each output is below the maximum value shown for the chosen pump drive.
7. Verify that the input speed does not exceed the maximum input speed shown for the pump drive.
8. Select the proper output option for pump adaptation. SAE adapters are available for all pump drives. Other adaptations may be available, contact Twin Disc for non SAE adaptations.

9. Identify cooling requirements:
 - Oil operating temperature must not exceed 105°C (221°F) with synthetic oil or 80°C (176°F) with mineral oil.
 - Depending on the input power, application and duty, a cooling system may be necessary.
 - It is advisable to check the oil temperature during the first few hours of work to make sure it does not exceed the maximum temperatures listed.
 - All pump drives (except AM 216 and AM 320) can be equipped with a cooling system consisting of an oil circulating pump mounted on the input shaft on the pump side, and oil/water cooler and required piping and fittings.

Twin Disc, Incorporated reminds users of these products that their safe operation depends on use in compliance with engineering information provided. Users are also reminded that safe operation depends on proper installation, operation and routine maintenance and inspection under prevailing conditions. It is the responsibility of users (and not Twin Disc, Incorporated) to provide and install guards or safety devices which may be required by recognized safety standards or by the Occupational Safety and Health Act of 1970 and its subsequent provisions.

United States of America • Australia • Belgium • France • Italy • Singapore • Switzerland